Problem 1.16

Sketch the vector function

$$
\mathbf{v}=\frac{\hat{\mathbf{r}}}{r^{2}},
$$

and compute its divergence. The answer may surprise you ... how do you account for it?

Solution

Below is a sketch of the vector field in a small box. The hue and length of a vector indicate its magnitude.

To compute the divergence of this completely radial vector function, it's easiest to use the formula in spherical coordinates inside the front cover, plugging in $v_{r}=1 / r^{2}, v_{\theta}=0$, and $v_{\phi}=0$. This hasn't been developed yet in the textbook, so it will be done in Cartesian coordinates. Rewrite the vector function.

$$
\begin{aligned}
\mathbf{v}=\frac{\hat{\mathbf{r}}}{r^{2}}=\frac{\mathbf{r}}{r^{3}} & =\frac{x \hat{\mathbf{x}}+y \hat{\mathbf{y}}+z \hat{\mathbf{z}}}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} \\
& =\frac{x}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} \hat{\mathbf{x}}+\frac{y}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} \hat{\mathbf{y}}+\frac{z}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} \hat{\mathbf{z}}
\end{aligned}
$$

And then take the divergence.

$$
\begin{aligned}
& \nabla \cdot \mathbf{v}=\frac{\partial}{\partial x}\left[\frac{x}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}\right] \\
& +\frac{\partial}{\partial y}\left[\frac{y}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}\right] \\
& +\frac{\partial}{\partial z}\left[\frac{z}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}\right] \\
& =\left[\frac{1}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}-\frac{3}{2} \frac{x}{\left(x^{2}+y^{2}+z^{2}\right)^{5 / 2}} \cdot 2 x\right] \\
& +\left[\frac{1}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}-\frac{3}{2} \frac{y}{\left(x^{2}+y^{2}+z^{2}\right)^{5 / 2}} \cdot 2 y\right] \\
& +\left[\frac{1}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}-\frac{3}{2} \frac{z}{\left(x^{2}+y^{2}+z^{2}\right)^{5 / 2}} \cdot 2 z\right] \\
& =\frac{3}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}-3 \frac{x^{2}+y^{2}+z^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{5 / 2}} \\
& =\frac{3}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}-\frac{3}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} \\
& =0
\end{aligned}
$$

This argument assumes implicitly that $x^{2}+y^{2}+z^{2} \neq 0$; that is, away from the origin the divergence of this vector field is zero. See part (b) of Problem 1.39 for the full story.

